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Outline

● Study II acceleration studies

● Future R&D

◆ Dynamics studies of conventional scheme

◆ Hardware issues

◆ Dogbone geometry

◆ FFAG Schemes
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Study II Acceleration Studies

● Work primarily performed by V. Lebedev and A. Bogacz at Jefferson Lab (and

Fermilab)

● Described scheme to accelerate from 129 MeV (KE) to 20 GeV.

◆ Linac to 2.48 GeV

◆ Single 4-pass recirculating accelerator to 20 GeV

● Compared to Study I

◆ Less energy gain in linac

◆ Lower final energy (20 vs. 50 GeV), one RLA

◆ Cost reduction
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Study II: Linac

● Matching section from cooling to accelerating linac
◆ Adiabatically converts beta functions from cooling values to acceleration

values
◆ Partially accelerates

● Linac cryostats: three types
◆ Initally large beam size: need short focal length
◆ Gain real-estate gradient by having fewer solenoids later

★ Additional space also needed for shielding
★ Long gap between cavities to decouple

◆ Reduce aperture later on
★ Higher gradient
★ Shorter distance to decouple

◆ Real-estate gradients: 4.47, 5.59, 7.79 MV/m

● Limited to two-cell cavities: power into coupler, mechanical
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Study II: Recirculating Accelerator

● Four passes

◆ Switchyard limits

● Triplet focusing: reduces envelope (beta function) chromaticity

● Linac cryomodules like long cryomodules from initial linac

● Input full energy width ±7.5%, output ±1.6%

● Preliminary arc design

◆ Factor of 2 transverse emittance blowup

◆ Output acceptance is 30π mm

● Beam loading has only minor effect
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R&D: Dynamics Studies

● Full nonlinear study

◆ Magnets are relatively short, large aperture: substantial end effects

◆ Study with full nonlinearities

★ Fringe fields
★ Sextupoles

◆ Substantial emittance growth

★ Understand
★ Cure

● More detailed studies of bunches with beam loading

● Improving longitudinal dynamics: further reduction in output energy spread?
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R&D: Hardware

● Magnets: short, large aperture

◆ Fringe fields

★ Determine for given design
★ Correct with pole tip, etc.

◆ Need to keep cost down: many arcs

● Switchyard

◆ Ensure that optics and floor layout are consistent for large momentum

spread beam
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R&D: Dogbone Geometry

● Geometry allows tradeoff between arc and linac costs

◆ Same number of linac passes, half as much linac

◆ Same amount of linac, about half as much arc

◆ In reality, something in-between

● Switchyard easier

● Fewer decays

● Cost optimization/comparison graph

● Increased costs

◆ Tunneling

◆ Beamline crossings
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R&D: FFAG Recirculating Accelerators

● Replace multiple arcs with single arc having large energy acceptance

● Hope for cost reduction

◆ More turns, less linac required

◆ Single arc less costly than multiple arcs

◆ Some aspects more costly

★ Wide energy acceptance arc more expensive than small acceptance
★ Multiple arc accelerator can cover larger energy range than single arc

● Switchyard eliminated

● Dynamic aperture

◆ Recent progress encouraging (C. Johnstone)
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FFAG Recirculating Accelerators (cont.)

● Path length variation with energy

◆ FFAG arc has significant variation in path length with energy

◆ Unable to make bunch return to same RF phase at all energies

◆ Cannot shift phase of RF quickly enough at low energies

★ To push power in requires Q too low: high power requirements
★ Ferrite shifters most likely reduce Q too much also

◆ Requires isochronous-type operation

◆ Quadratic variation of path length with energy

★ May be more complicated when nonlinearity considered
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FFAG Recirculating Accelerators (cont.)

● Path length problem not as bad as expected

◆ For a given range of path length, expect maximum number of turns before
phase slips too far

◆ If choose parameters correctly, arbitrary number of turns
★ Crosses crest three times
★ Must choose initial phase and reference path length correctly
★ More turns, initial phase further off-crest
★ Linac length limits to nonzero value for large number of turns
★ Acceptance not addressed

◆ Alternate method: phase each cavity separately (Koscielniak)
★ Energy gain on each pass same
★ Approx 30% excess voltage required
★ 5 turns at 200 MHz gives very large acceptance (1 eV-s)
★ Adding harmonics improves more
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FFAG Recirculating Accelerators (cont.)

● RF phasing methods

◆ Can allow non-isochronous operation

★ Better for beam loading
★ Smaller energy spread
★ Requires relative frequency shift of 10−3 to 10−2

◆ Storage cavity methods

★ Store energy in high-Q cavity: low peak power
★ Rapidly transfer to low-Q cavity, only there when beam present
★ Shift frequency in low-Q cavity

◆ Ferrite/PIN diode methods

★ Tend to lower Q significantly
★ Placement and material choice may improve
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